Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Nutr Metab (Lond) ; 21(1): 20, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594756

RESUMO

BACKGROUND: Body composition and body fat distribution are important predictors of cardiometabolic diseases. The etiology of cardiometabolic diseases is heterogenous, and partly driven by inter-individual differences in tissue-specific insulin sensitivity. OBJECTIVES: To investigate (1) the associations between body composition and whole-body, liver and muscle insulin sensitivity, and (2) changes in body composition and insulin sensitivity and their relationship after a 12-week isocaloric diet high in mono-unsaturated fatty acids (HMUFA) or a low-fat, high-protein, high-fiber (LFHP) diet. METHODS: This subcohort analysis of the PERSON study includes 93 individuals (53% women, BMI 25-40 kg/m2, 40-75 years) who participated in this randomized intervention study. At baseline and after 12 weeks of following the LFHP, or HMUFA diet, we performed a 7-point oral glucose tolerance test to assess whole-body, liver, and muscle insulin sensitivity, and whole-body magnetic resonance imaging to determine body composition and body fat distribution. Both diets are within the guidelines of healthy nutrition. RESULTS: At baseline, liver fat content was associated with worse liver insulin sensitivity (ß [95%CI]; 0.12 [0.01; 0.22]). Only in women, thigh muscle fat content was inversely related to muscle insulin sensitivity (-0.27 [-0.48; -0.05]). Visceral adipose tissue (VAT) was inversely associated with whole-body, liver, and muscle insulin sensitivity. Both diets decreased VAT, abdominal subcutaneous adipose tissue (aSAT), and liver fat, but not whole-body and tissue-specific insulin sensitivity with no differences between diets. Waist circumference, however, decreased more following the LFHP diet as compared to the HMUFA diet (-3.0 vs. -0.5 cm, respectively). After the LFHP but not HMUFA diet, improvements in body composition were positively associated with improvements in whole-body and liver insulin sensitivity. CONCLUSIONS: Liver and muscle insulin sensitivity are distinctly associated with liver and muscle fat accumulation. Although both LFHP and HMUFA diets improved in body fat, VAT, aSAT, and liver fat, only LFHP-induced improvements in body composition are associated with improved insulin sensitivity. TRIAL REGISTRATION: NCT03708419 (clinicaltrials.gov).

2.
Diabetes ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656918

RESUMO

Obesity is associated with chronic inflammation and metabolic complications, including insulin resistance (IR). Immune cells drive inflammation through the rewiring of intracellular metabolism. However, the impact of obesity-related IR on the metabolism and functionality of circulating immune cells, like monocytes, remains poorly understood. To increase insight into the inter-individual variation of immunometabolic signatures among individuals and their role in the development of IR, we assessed systemic and tissue-specific IR and circulating immune markers, and we characterized metabolic signatures and cytokine secretion of circulating monocytes from 194 individuals with a BMI≥25kg/m2. Monocyte metabolic signatures were defined using extracellular acidification rates (ECAR) to estimate glycolysis and oxygen consumption rates (OCR) for oxidative metabolism. Although monocyte metabolic signatures and function based on cytokine secretion varied greatly among subjects, they were strongly associated with each other. The ECAR/OCR ratio, representing the balance between glycolysis and oxidative metabolism, was negatively associated with fasting insulin, systemic IR, and liver-specific IR. These results indicate that monocytes from individuals with IR were relatively more dependent on oxidative metabolism, while monocytes from more insulinsensitive individuals were more dependent on glycolysis. Additionally, circulating CXCL11 was negatively associated with the degree of systemic IR and positively with the ECAR/OCR ratio in monocytes, suggesting that individuals with high IR and a monocyte metabolic dependence on oxidative metabolism also have lower levels of circulating CXCL11. Our findings suggest that monocyte metabolism is related to obesity-associated IR progression and deepen insights into the interplay between innate immune cell metabolism and IR development in humans.

3.
Sci Rep ; 14(1): 8037, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580749

RESUMO

Continuous glucose monitoring (CGM) is a promising, minimally invasive alternative to plasma glucose measurements for calibrating physiology-based mathematical models of insulin-regulated glucose metabolism, reducing the reliance on in-clinic measurements. However, the use of CGM glucose, particularly in combination with insulin measurements, to develop personalized models of glucose regulation remains unexplored. Here, we simultaneously measured interstitial glucose concentrations using CGM as well as plasma glucose and insulin concentrations during an oral glucose tolerance test (OGTT) in individuals with overweight or obesity to calibrate personalized models of glucose-insulin dynamics. We compared the use of interstitial glucose with plasma glucose in model calibration, and evaluated the effects on model fit, identifiability, and model parameters' association with clinically relevant metabolic indicators. Models calibrated on both plasma and interstitial glucose resulted in good model fit, and the parameter estimates associated with metabolic indicators such as insulin sensitivity measures in both cases. Moreover, practical identifiability of model parameters was improved in models estimated on CGM glucose compared to plasma glucose. Together these results suggest that CGM glucose may be considered as a minimally invasive alternative to plasma glucose measurements in model calibration to quantify the dynamics of glucose regulation.


Assuntos
Glucose , Insulina , Humanos , Glicemia/metabolismo , Automonitorização da Glicemia , Monitoramento Contínuo da Glicose
4.
Cardiovasc Diabetol ; 23(1): 97, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493102

RESUMO

BACKGROUND: Tissue-specific insulin resistance (IR) predominantly in muscle (muscle IR) or liver (liver IR) has previously been linked to distinct fasting metabolite profiles, but postprandial metabolite profiles have not been investigated in tissue-specific IR yet. Given the importance of postprandial metabolic impairments in the pathophysiology of cardiometabolic diseases, we compared postprandial plasma metabolite profiles in response to a high-fat mixed meal between individuals with predominant muscle IR or liver IR. METHODS: This cross-sectional study included data from 214 women and men with BMI 25-40 kg/m2, aged 40-75 years, and with predominant muscle IR or liver IR. Tissue-specific IR was assessed using the muscle insulin sensitivity index (MISI) and hepatic insulin resistance index (HIRI), which were calculated from the glucose and insulin responses during a 7-point oral glucose tolerance test. Plasma samples were collected before (T = 0) and after (T = 30, 60, 120, 240 min) consumption of a high-fat mixed meal and 247 metabolite measures, including lipoproteins, cholesterol, triacylglycerol (TAG), ketone bodies, and amino acids, were quantified using nuclear magnetic resonance spectroscopy. Differences in postprandial plasma metabolite iAUCs between muscle and liver IR were tested using ANCOVA with adjustment for age, sex, center, BMI, and waist-to-hip ratio. P-values were adjusted for a false discovery rate (FDR) of 0.05 using the Benjamini-Hochberg method. RESULTS: Sixty-eight postprandial metabolite iAUCs were significantly different between liver and muscle IR. Liver IR was characterized by greater plasma iAUCs of large VLDL (p = 0.004), very large VLDL (p = 0.002), and medium-sized LDL particles (p = 0.026), and by greater iAUCs of TAG in small VLDL (p = 0.025), large VLDL (p = 0.003), very large VLDL (p = 0.002), all LDL subclasses (all p < 0.05), and small HDL particles (p = 0.011), compared to muscle IR. In liver IR, the postprandial plasma fatty acid (FA) profile consisted of a higher percentage of saturated FA (p = 0.013), and a lower percentage of polyunsaturated FA (p = 0.008), compared to muscle IR. CONCLUSION: People with muscle IR or liver IR have distinct postprandial plasma metabolite profiles, with more unfavorable postprandial metabolite responses in those with liver IR compared to muscle IR.


Assuntos
Resistência à Insulina , Masculino , Humanos , Feminino , Resistência à Insulina/fisiologia , Estudos Transversais , Triglicerídeos , Ácidos Graxos/metabolismo , Fígado/metabolismo , Músculos/metabolismo , Período Pós-Prandial/fisiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-38375937

RESUMO

CONTEXT: Abdominal obesity is associated with increased cardiometabolic disease risk, while lower body fat seems to confer protection against obesity-related complications. The functional differences between upper and lower body adipose tissue (AT) remain poorly understood. OBJECTIVE: We aimed to examine whether mitochondrial respiration is impaired in abdominal as compared to femoral differentiated human multipotent adipose-derived stem cells (hMADS; primary outcome) and AT in postmenopausal women. DESIGN: In this cross-sectional study, 23 postmenopausal women with normal weight or obesity were recruited at the University of Birmingham/Queen Elizabeth Hospital Birmingham (Birmingham, UK). We collected abdominal and femoral subcutaneous AT biopsies to determine mitochondrial oxygen consumption rates in differentiated abdominal and femoral hMADS. Furthermore, we assessed OXPHOS protein expression and mtDNA content in abdominal and femoral AT as well as hMADS. Finally, we explored in vivo fractional oxygen extraction and carbon dioxide release across abdominal and femoral subcutaneous AT in a subgroup of the same individuals with normal weight or obesity. RESULTS: We found lower basal and maximal uncoupled mitochondrial oxygen consumption rates in abdominal compared to femoral hMADS. In line, in vivo fractional oxygen extraction and carbon dioxide release were lower across abdominal than femoral AT. OXPHOS protein expression and mtDNA content did not significantly differ between abdominal and femoral differentiated hMADS and AT. CONCLUSION: The present findings demonstrate that in vitro mitochondrial respiration and in vivo oxygen fractional extraction are lower in upper compared to lower body differentiated hMADS and AT, respectively, in postmenopausal women.

6.
Obesity (Silver Spring) ; 32(3): 517-527, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38112242

RESUMO

OBJECTIVE: Fetuin B is a steatosis-responsive hepatokine that causes glucose intolerance in mice, but the underlying mechanisms remain incompletely described. This study aimed to elucidate the mechanisms of action of fetuin B by investigating its putative effects on white adipose tissue metabolism. METHODS: First, fetuin B gene and protein expression was measured in multiple organs in mice and in cultured adipocytes. Next, the authors performed a hyperinsulinemic-euglycemic clamp in mice and in humans to examine the link between white adipose tissue fetuin B content and indices of insulin sensitivity. Finally, the effect of fetuin B on inflammation was investigated in cultured adipocytes by quantitative polymerase chain reaction and full RNA sequencing. RESULTS: This study demonstrated in adipocytes and mice that fetuin B was produced and secreted by the liver and taken up by adipocytes and adipose tissue. There was a strong negative correlation between white adipose tissue fetuin B content and peripheral insulin sensitivity in mice and in humans. RNA sequencing and polymerase chain reaction analysis revealed that fetuin B induced an inflammatory response in adipocytes. CONCLUSIONS: Fetuin B content in white adipose tissue strongly associated with peripheral insulin resistance in mice and humans. Furthermore, fetuin B induced a proinflammatory response in adipocytes, which might drive peripheral insulin resistance.


Assuntos
Tecido Adiposo Branco , Fetuína-B , Resistência à Insulina , Animais , Humanos , Camundongos , Tecido Adiposo/metabolismo , Tecido Adiposo Branco/química , Tecido Adiposo Branco/metabolismo , Fetuína-B/análise , Fetuína-B/metabolismo , Inflamação/metabolismo , Insulina/metabolismo
7.
EClinicalMedicine ; 62: 102061, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37554127

RESUMO

Background: Obesity is recognized by the World Health Organization as a chronic disease. As such, it should be referred to using the language of chronic diseases, with correct and established terminology and definitions. This study was designed to map the current language used to discuss obesity and to compare this with the standard language used for chronic disease. Methods: We performed a modified Delphi study to identify the language of chronic disease that is being used in the context of obesity, and to identify discrepancies and potential use of inadequate language with respect to the standard language used for chronic diseases. Participants (n = 24) were identified from relevant stakeholder groups and desk research, and included patients, healthcare professionals, policymakers, researchers, industry, and payers (social insurers) of 18 nationalities/regions in Europe, North/South America, and South Africa. Participants were enrolled between 20.10.2020 and 30.10.2020. The study comprised two rounds of qualitative surveys. In Round 1, participants responded to six open-ended questions. Round 2 comprised 38 statements based on key terms/themes identified in Round 1 and covered the definition, causes, progression, treatment, management, and complications of obesity. Consensus was defined as ≥70% participant agreement on a statement. Findings: All participants completed Round 1 and 23 participants completed Round 2. In Round 2, consensus was reached for 28 of the 38 statements. Participants reached a consensus regarding the use of statements that acknowledge the heterogeneous nature of obesity, but not on the use of statements that: defined obesity based on body mass index; regarded psychological, physical, or physiological factors among the main causes of obesity; or implied that weight loss should be the aim of obesity treatment. Interpretation: This study uses expert consensus to provide insight into the language used to describe obesity as a chronic disease, and forms the basis for a unified language of obesity. Funding: Innovative Medicines Initiative, Novo Nordisk A/S.

8.
Rev Endocr Metab Disord ; 24(5): 825-838, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37581871

RESUMO

Given the increasing number of people living with obesity and related chronic metabolic disease, precision nutrition approaches are required to increase the effectiveness of prevention strategies. This review addresses these approaches in different metabolic phenotypes (metabotypes) in obesity. Although obesity is typically associated with an increased cardiometabolic disease risk, some people with obesity are relatively protected against the detrimental effects of excess adiposity on cardiometabolic health, also referred to as 'metabolically healthy obesity' (MHO). Underlying mechanisms, the extent to which MHO is a transient state as well as lifestyle strategies to counteract the transition from MHO to metabolically unhealthy obesity (MUO) are discussed. Based on the limited resources that are available for dietary lifestyle interventions, it may be reasonable to prioritize interventions for people with MUO, since targeting high-risk patients for specific nutritional, lifestyle or weight-loss strategies may enhance the cost-effectiveness of these interventions. Additionally, the concept of tissue insulin resistant (IR) metabotypes is discussed, representing distinct etiologies towards type 2 diabetes (T2D) as well as cardiovascular disease (CVD). Recent evidence indicates that these tissue IR metabotypes, already present in individuals with obesity with a normal glucose homeostasis, respond differentially to diet. Modulation of dietary macronutrient composition according to these metabotypes may considerably improve cardiometabolic health benefits. Thus, nutritional or lifestyle intervention may improve cardiometabolic health, even with only minor or no weight loss, which stresses the importance of focusing on a healthy lifestyle and not on weight loss only. Targeting different metabotypes towards T2D and cardiometabolic diseases may lead to more effective lifestyle prevention and treatment strategies. Age and sex-related differences in tissue metabotypes and related microbial composition and functionality (fermentation), as important drivers and/or mediators of dietary intervention response, have to be taken into account. For the implementation of these approaches, more prospective trials are required to provide the knowledge base for precision nutrition in the prevention of chronic metabolic diseases.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Síndrome Metabólica , Obesidade Metabolicamente Benigna , Humanos , Diabetes Mellitus Tipo 2/etiologia , Estudos Prospectivos , Obesidade/metabolismo , Obesidade Metabolicamente Benigna/complicações , Insulina , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/etiologia , Fatores de Risco , Fenótipo
9.
PLoS One ; 18(7): e0285820, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37498860

RESUMO

Computational models of human glucose homeostasis can provide insight into the physiological processes underlying the observed inter-individual variability in glucose regulation. Modelling approaches ranging from "bottom-up" mechanistic models to "top-down" data-driven techniques have been applied to untangle the complex interactions underlying progressive disturbances in glucose homeostasis. While both approaches offer distinct benefits, a combined approach taking the best of both worlds has yet to be explored. Here, we propose a sequential combination of a mechanistic and a data-driven modeling approach to quantify individuals' glucose and insulin responses to an oral glucose tolerance test, using cross sectional data from 2968 individuals from a large observational prospective population-based cohort, the Maastricht Study. The best predictive performance, measured by R2 and mean squared error of prediction, was achieved with personalized mechanistic models alone. The addition of a data-driven model did not improve predictive performance. The personalized mechanistic models consistently outperformed the data-driven and the combined model approaches, demonstrating the strength and suitability of bottom-up mechanistic models in describing the dynamic glucose and insulin response to oral glucose tolerance tests.


Assuntos
Glicemia , Glucose , Humanos , Estudos Prospectivos , Estudos Transversais , Insulina
10.
Front Endocrinol (Lausanne) ; 14: 1205799, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455922

RESUMO

Introduction: Upper and lower body fat accumulation poses an opposing obesity-related cardiometabolic disease risk. Depot-differences in subcutaneous adipose tissue (SAT) function may underlie these associations. We aimed to investigate the inflammatory signatures of abdominal (ABD) and femoral (FEM) SAT in postmenopausal women with normal weight or obesity. Methods: We included 23 postmenopausal women with normal weight (n = 13) or obesity (n = 10). In vivo secretion of adipokines from ABD and FEM SAT was measured using the arterio-venous balance technique. Adipokine gene expression and adipocyte morphology were examined in ABD and FEM SAT. Furthermore, adipokine expression and secretion were investigated in vitro using differentiated human primary ABD and FEM subcutaneous adipocytes derived from the study participants. Results: Plasma leptin and plasminogen activator inhibitor (PAI)-1 concentrations were higher, and ABD and FEM adipocytes were larger in women with obesity than normal weight. No differences in adipocyte size and blood flow were apparent between ABD and FEM SAT. We found significant release of leptin and monocyte chemoattractant protein (MCP)-1 from ABD and FEM SAT, with higher fractional release of MCP-1 from ABD than FEM SAT. Gene expression of leptin, PAI-1, and tumor necrosis factor-α was lower in ABD than FEM SAT and higher in women with obesity than normal weight. In ABD adipocytes, interleukin-6, PAI-1, and leptin gene expression were higher, while adiponectin and dipeptidyl-peptidase-4 gene expression were lower than in FEM adipocytes. Finally, ABD adipocytes secreted less MCP-1 compared to FEM adipocytes. Discussion: These findings demonstrate that upper and lower body SAT and adipocytes are characterized by distinct inflammatory signatures in postmenopausal women, which seem independent of adipocyte size.


Assuntos
Leptina , Inibidor 1 de Ativador de Plasminogênio , Humanos , Feminino , Leptina/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Obesidade/metabolismo , Adipocinas/metabolismo
11.
Obesity (Silver Spring) ; 31(7): 1745-1754, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37368517

RESUMO

OBJECTIVE: This study (1) investigated the effect of weight loss on whole-body and tissue-specific insulin sensitivity and on intrahepatic lipid (IHL) content and composition and (2) investigated the association between weight-loss-induced changes in insulin sensitivity and IHL content in individuals with overweight or obesity. METHODS: In this secondary analysis of the European SWEET project, 50 adults (age 18-65 years) with overweight or obesity (BMI ≥ 25 kg/m2 ) followed a low-energy diet (LED) for 2 months. At baseline and after the LED, body composition (dual-energy x-ray absorptiometry), IHL content and composition (proton magnetic resonance spectroscopy), whole-body insulin sensitivity (Matsuda index), muscle insulin sensitivity index (MISI), and hepatic insulin resistance index (HIRI) were determined (7-point oral glucose tolerance test). RESULTS: The LED reduced body weight (p < 0.001). This was accompanied by increased Matsuda index and reduced HIRI (both p < 0.001) but no change in MISI (p = 0.260). Weight loss decreased IHL content (mean [SEM], 3.9% [0.7%] vs. 1.6% [0.5%], p < 0.001) and the hepatic saturated fatty acid fraction (41.0% [1.5%] vs. 36.6% [1.9%], p = 0.039). The reduced IHL content was associated with an improvement in HIRI (r = 0.402, p = 0.025). CONCLUSIONS: Weight loss decreased IHL content and the hepatic saturated fatty acid fraction. The decrease in IHL content was associated with weight-loss-induced improvement in hepatic insulin sensitivity in individuals with overweight or obesity.


Assuntos
Resistência à Insulina , Adulto , Humanos , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Idoso , Resistência à Insulina/fisiologia , Sobrepeso , Fígado/diagnóstico por imagem , Obesidade , Redução de Peso , Insulina , Lipídeos , Ácidos Graxos
12.
iScience ; 26(3): 106218, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36895641

RESUMO

Current computational models of whole-body glucose homeostasis describe physiological processes by which insulin regulates circulating glucose concentrations. While these models perform well in response to oral glucose challenges, interaction with other nutrients that impact postprandial glucose metabolism, such as amino acids (AAs), is not considered. Here, we developed a computational model of the human glucose-insulin system, which incorporates the effects of AAs on insulin secretion and hepatic glucose production. This model was applied to postprandial glucose and insulin time-series data following different AA challenges (with and without co-ingestion of glucose), dried milk protein ingredients, and dairy products. Our findings demonstrate that this model allows accurate description of postprandial glucose and insulin dynamics and provides insight into the physiological processes underlying meal responses. This model may facilitate the development of computational models that describe glucose homeostasis following the intake of multiple macronutrients, while capturing relevant features of an individual's metabolic health.

13.
Int J Obes (Lond) ; 47(6): 520-527, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36997723

RESUMO

BACKGROUND/OBJECTIVE: Compelling evidence indicates that myokines act in an autocrine, paracrine and endocrine manner to alter metabolic homeostasis. The mechanisms underlying exercise-induced changes in myokine secretion remain to be elucidated. Since exercise acutely decreases oxygen partial pressure (pO2) in skeletal muscle (SM), the present study was designed to test the hypothesis that (1) hypoxia exposure impacts myokine secretion in primary human myotubes and (2) exposure to mild hypoxia in vivo alters fasting and postprandial plasma myokine concentrations in humans. METHODS: Differentiated primary human myotubes were exposed to different physiological pO2 levels for 24 h, and cell culture medium was harvested to determine myokine secretion. Furthermore, we performed a randomized single-blind crossover trial to investigate the impact of mild intermittent hypoxia exposure (MIH: 7-day exposure to 15% O2, 3x2h/day vs. normoxia: 21% O2) on in vivo SM pO2 and plasma myokine concentrations in 12 individuals with overweight and obesity (body-mass index ≥ 28 kg/m2). RESULTS: Hypoxia exposure (1% O2) increased secreted protein acidic and rich in cysteine (SPARC, p = 0.043) and follistatin like 1 (FSTL1, p = 0.021), and reduced leukemia inhibitory factor (LIF) secretion (p = 0.009) compared to 3% O2 in primary human myotubes. In addition, 1% O2 exposure increased interleukin-6 (IL-6, p = 0.004) and SPARC secretion (p = 0.021), whilst reducing fatty acid binding protein 3 (FABP3) secretion (p = 0.021) compared to 21% O2. MIH exposure in vivo markedly decreased SM pO2 (≈40%, p = 0.002) but did not alter plasma myokine concentrations. CONCLUSIONS: Hypoxia exposure altered the secretion of several myokines in primary human myotubes, revealing hypoxia as a novel modulator of myokine secretion. However, both acute and 7-day MIH exposure did not induce alterations in plasma myokine concentrations in individuals with overweight and obesity. CLINICAL TRIALS IDENTIFIER: This study is registered at the Netherlands Trial Register (NL7120/NTR7325).


Assuntos
Proteínas Relacionadas à Folistatina , Osteonectina , Humanos , Osteonectina/metabolismo , Sobrepeso/metabolismo , Método Simples-Cego , Músculo Esquelético/metabolismo , Interleucina-6/metabolismo , Obesidade/metabolismo , Hipóxia/metabolismo , Proteínas Relacionadas à Folistatina/metabolismo
14.
Obesity (Silver Spring) ; 31(5): 1326-1337, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36998153

RESUMO

OBJECTIVE: A proinflammatory adipose tissue (AT) microenvironment and systemic low-grade inflammation may differentially affect tissue-specific insulin sensitivity. This study investigated the relationships of abdominal subcutaneous AT (aSAT) and circulating immune cells, aSAT gene expression, and circulating inflammatory markers with liver and skeletal muscle insulin sensitivity in people with overweight and obesity. METHODS: Individuals with overweight and obesity from the PERSonalized Glucose Optimization Through Nutritional Intervention (PERSON) Study (n = 219) and the Maastricht Study (replication cohort; n = 1256) underwent a seven-point oral glucose tolerance test to assess liver and muscle insulin sensitivity, and circulating inflammatory markers were determined. In subgroups, flow cytometry was performed to identify circulating and aSAT immune cells, and aSAT gene expression was evaluated. RESULTS: The relative abundances of circulating T cells, nonclassical monocytes, and CD56dim CD16+ natural killer cells were inversely associated with liver, but not muscle, insulin sensitivity in the PERSON Study. The inverse association between circulating (classical) monocytes and liver insulin sensitivity was confirmed in the Maastricht Study. In aSAT, immune cell populations were not related to insulin sensitivity. Furthermore, aSAT gene expression of interleukin 6 and CD14 was positively associated with muscle, but not liver, insulin sensitivity. CONCLUSIONS: The present findings demonstrate that circulating immune cell populations and inflammatory gene expression in aSAT show distinct associations with liver and muscle insulin sensitivity.


Assuntos
Resistência à Insulina , Sobrepeso , Humanos , Sobrepeso/metabolismo , Resistência à Insulina/fisiologia , Gordura Subcutânea/metabolismo , Tecido Adiposo/metabolismo , Obesidade/metabolismo , Músculo Esquelético/metabolismo
15.
Acta Physiol (Oxf) ; 237(4): e13945, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36745002

RESUMO

AIM: The aim of this study is to investigate associations between the physical activity (PA) spectrum (sedentary behavior to exercise) and tissue-specific insulin resistance (IR). METHODS: We included 219 participants for analysis (median [IQR]: 61 [55; 67] years, BMI 29.6 [26.9; 32.0] kg/m2 ; 60% female) with predominant muscle or liver IR, as determined using a 7-point oral glucose tolerance test (OGTT). PA and sedentary behavior were measured objectively (ActivPAL) across 7 days. Context-specific PA was assessed with the Baecke questionnaire. Multiple linear regression models (adjustments include age, sex, BMI, site, season, retirement, and dietary intake) were used to determine associations between the PA spectrum and hepatic insulin resistance index (HIRI), muscle insulin sensitivity index (MISI) and whole-body IR (HOMA-IR, Matsuda index). RESULTS: In fully adjusted models, objectively measured total PA (standardized regression coefficient ß = 0.17, p = 0.020), light-intensity PA (ß = 0.15, p = 0.045) and moderate-to-vigorous intensity PA (ß = 0.13, p = 0.048) were independently associated with Matsuda index, but not HOMA-IR (p > 0.05). A higher questionnaire-derived sport index and leisure index were associated with significantly lower whole-body IR (Matsuda, HOMA-IR) in men but not in women. Results varied across tissues: more time spent sedentary (ß = -0.24, p = 0.045) and a higher leisure index (ß = 0.14, p = 0.034) were respectively negatively and positively associated with MISI, but not HIRI. A higher sport index was associated with lower HIRI (ß = -0.30, p = 0.007, in men only). CONCLUSION: While we confirm a beneficial association between PA and whole-body IR, our findings indicate that associations between the PA spectrum and IR seem distinct depending on the primary site of insulin resistance (muscle or liver).


Assuntos
Exercício Físico , Resistência à Insulina , Comportamento Sedentário , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Teste de Tolerância a Glucose , Músculos , Fígado
16.
Cell Metab ; 35(1): 71-83.e5, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36599304

RESUMO

Precision nutrition based on metabolic phenotype may increase the effectiveness of interventions. In this proof-of-concept study, we investigated the effect of modulating dietary macronutrient composition according to muscle insulin-resistant (MIR) or liver insulin-resistant (LIR) phenotypes on cardiometabolic health. Women and men with MIR or LIR (n = 242, body mass index [BMI] 25-40 kg/m2, 40-75 years) were randomized to phenotype diet (PhenoDiet) group A or B and followed a 12-week high-monounsaturated fatty acid (HMUFA) diet or low-fat, high-protein, and high-fiber diet (LFHP) (PhenoDiet group A, MIR/HMUFA and LIR/LFHP; PhenoDiet group B, MIR/LFHP and LIR/HMUFA). PhenoDiet group B showed no significant improvements in the primary outcome disposition index, but greater improvements in insulin sensitivity, glucose homeostasis, serum triacylglycerol, and C-reactive protein compared with PhenoDiet group A were observed. We demonstrate that modulating macronutrient composition within the dietary guidelines based on tissue-specific insulin resistance (IR) phenotype enhances cardiometabolic health improvements. Clinicaltrials.gov registration: NCT03708419, CCMO registration NL63768.068.17.


Assuntos
Doenças Cardiovasculares , Resistência à Insulina , Feminino , Humanos , Doenças Cardiovasculares/prevenção & controle , Dieta com Restrição de Gorduras , Insulina , Resistência à Insulina/fisiologia , Fenótipo , Adulto , Pessoa de Meia-Idade , Idoso
17.
Am J Physiol Endocrinol Metab ; 324(2): E135-E143, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36542847

RESUMO

Hypoxic exercise (HE) may have more pronounced effects on glucose homeostasis than exercise under normoxic conditions (NE), but effects on 24-h glucose profile and substrate utilization remain unclear. We investigated the effects of moderate-intensity HE compared with NE on 24-h glucose profile and substrate metabolism in overweight/obese individuals. Ten overweight/obese men with impaired glucose homeostasis participated in a randomized, single-blind, crossover trial. Participants performed moderate-intensity cycling exercise for 4 consecutive days under mild normobaric hypoxic ([Formula: see text]: 15%) or normoxic ([Formula: see text]: 21%) conditions at similar relative exercise intensity (2 × 30 min/day at 50% of maximal heart rate, with a ∼4-wk washout period. Twenty-four-hour glucose levels and systemic oxygen saturation ([Formula: see text]) were monitored throughout the study. At day 5, plasma metabolites and substrate oxidation were determined during a mixed-meal test under normoxic conditions. [Formula: see text] and absolute workload were lower (both P < 0.001), whereas heart rate was comparable during HE compared with NE. HE did not alter mean 24-h, daytime, and nighttime glucose concentrations, and measures of glycemic variability. However, the HE-induced decrease in [Formula: see text] was positively correlated with HE-induced improvements in mean 24-h (rs = 0.683, P = 0.042) and daytime (rs = 0.783, P = 0.013) glucose concentrations. HE at similar relative exercise intensity reduces [Formula: see text] and has comparable effects on mean 24-h glucose concentration and glycemic variability than NE in overweight/obese men with impaired glucose metabolism. Nevertheless, a more pronounced reduction in [Formula: see text] during HE was associated with lower 24-h glucose concentrations, suggesting that a marked hypoxic stimulus is needed to improve glucose homeostasis.NEW & NOTEWORTHY We demonstrate that hypoxic exercise at similar relative exercise intensity (i.e. lower absolute workload) reduces systemic oxygen saturation ([Formula: see text]) and has comparable effects on mean 24-h glucose concentrations and glycemic variability than normoxic exercise in men with overweight/obesity and impaired glucose metabolism. A more pronounced reduction in [Formula: see text] during hypoxic exercise, however, was associated with lower 24-h and daytime glucose concentrations. Our findings suggest that a marked hypoxic stimulus may improve glucose homeostasis.


Assuntos
Glucose , Sobrepeso , Masculino , Humanos , Sobrepeso/terapia , Método Simples-Cego , Obesidade/metabolismo , Exercício Físico/fisiologia , Hipóxia , Consumo de Oxigênio
18.
Cells ; 11(22)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36428961

RESUMO

Adipose tissue (AT) inflammation may increase obesity-related cardiometabolic complications. Altered AT oxygen partial pressure (pO2) may impact the adipocyte inflammatory phenotype. Here, we investigated the effects of physiological pO2 levels on the inflammatory phenotype of abdominal (ABD) and femoral (FEM) adipocytes derived from postmenopausal women with normal weight (NW) or obesity (OB). Biopsies were collected from ABD and FEM subcutaneous AT in eighteen postmenopausal women (aged 50-65 years) with NW (BMI 18-25 kg/m2, n = 9) or OB (BMI 30-40 kg/m2, n = 9). We compared the effects of prolonged exposure to different physiological pO2 levels on adipokine expression and secretion in differentiated human multipotent adipose-derived stem cells. Low physiological pO2 (5% O2) significantly increased leptin gene expression/secretion in ABD and FEM adipocytes derived from individuals with NW and OB compared with high physiological pO2 (10% O2) and standard laboratory conditions (21% O2). Gene expression/secretion of IL-6, DPP-4, and MCP-1 was reduced in differentiated ABD and FEM adipocytes from individuals with OB but not NW following exposure to low compared with high physiological pO2 levels. Low physiological pO2 decreases gene expression and secretion of several proinflammatory factors in ABD and FEM adipocytes derived from individuals with OB but not NW.


Assuntos
Adipocinas , Oxigênio , Humanos , Feminino , Adipocinas/metabolismo , Oxigênio/metabolismo , Adipócitos/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo
19.
Gut Microbes ; 14(1): 2083905, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35695620

RESUMO

Detrimental consequences of antibiotic treatment may include long-lasting disruption of the gut microbiota. Previous studies found no negative effects of antibiotics on metabolic health, although individualized responses were observed. Here, we aimed to investigate the subject-specific response to vancomycin use in tissue-specific insulin sensitivity by stratifying individuals based on the presence of antibiotic resistance genes (ARGs) or opportunistic pathogens (OPs) in the baseline fecal microbiota. Quantitative Polymerase Chain Reaction (qPCR) was used to detect ARGs and OPs in DNA isolated from fecal samples of 56 males with overweight/obesity (Body Mass Index: 25-35 kg/m2) and impaired glucose metabolism (fasting plasma glucose ≥5.6 mmol/L and/or 2-hour glucose 7.8-11.1 mmol/L). A two-step hyperinsulinemic-euglycemic clamp was performed to determine tissue-specific insulin sensitivity. Abdominal subcutaneous adipose tissue (AT) gene expression was assessed using Affymetrix microarray. Gut microbial composition was determined using the Human Intestinal Tract Chip (HITChip) microarray. At baseline, the vancomycin resistance gene vanB was present in 60% of our population. In individuals that were vanB-negative at baseline, AT insulin sensitivity (insulin-mediated suppression of plasma free fatty acids) improved during vancomycin use, while it decreased among vanB-positive individuals (% change post versus baseline: 14.1 ± 5.6 vs. -6.7 ± 7.5% (p = .042)). The vancomycin-induced increase in AT insulin sensitivity was accompanied by downregulation of inflammatory pathways and enrichment of extracellular matrix remodeling pathways in AT. In the vanB-positive group, well-known vanB-carrying bacteria, Enterococcus and Streptococcus, expanded in the gut microbiome. In conclusion, microbiome composition and adipose tissue biology were differentially affected by vancomycin treatment based on fecal vanB carriage.


Assuntos
Microbioma Gastrointestinal , Resistência à Insulina , Tecido Adiposo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Humanos , Resistência à Insulina/genética , Masculino , Vancomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...